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Abstract1

How are your opinions on a supposition related to your uncondi-2

tional opinions? One simple answer is Material Coincidence: when you3

are not sure that not q, you are sure that p on the supposition that q4

just in case you are sure that either not q or p (◇q ⊃ (◻q p ≡ ◻(q ⊃5

p))). I give a novel argument against Material Coincidence: given weak6

side-conditions, it entails the implausible claim that being sure im-7

plies being sure that you are sure (◻p ⊃ ◻◻p).8

1 Introduction9

My topic will be conditional mental states such as knowing, believing, or10

intending conditional on a supposition. Conditional mental states have been11

widely employed in philosophy, but their nature is not well understood.112

Philosophers often assume that your conditional mental states arise13

from hypothetically adding the supposition to your stock of knowledge,14

and minimally changing your unconditional mental states in response. My15

target will be a principle that many think flows from this idea:16

Material Coincidence (Mat). ◇q ⊃ (◻q p ≡ ◻(q ⊃ p))17

If you’re not sure that not q, then you’re sure given q that p just in18

case you’re sure that either not q or p.19

I focus on being sure because I worry that belief is too weak to satisfy Mat2,20

but my argument is schematic and generalises to other mental states such21

as knowledge. Since psychological hiccups can make you violate almost22

any general principle about sureness, I should really talk about what you23

should be sure of, but I will often run with sureness for readability.24

1Applications include belief revision (Alchourrón et al., 1985; Stalnaker, 2009), defeat
(Stalnaker, 2006; Dorst, 2019), imagination and mind-reading (Currie & Ravenscroft, 2002,
§1.3, §2.4; Goldman, 2006, ch. 7; Stich & Nichols, 2000), decision theory (Joyce, 1999, ch.
6-7; Ramsey, 1931 [1926]), conditionals (Edgington, 1995; Williamson, 2020), “constrained”
attitude ascriptions (Blumberg & Holguı́n, 2019; Blumberg & Lederman, 2020), judging
what others ought to do (Gibbard, 2003, 48ff.), and shared agency (Velleman, 1997).

2See Pearson (2024) and Fang (ms) for relevant discussion.

1



I think Material Coincidence is false. My argument against it will25

rely on a parallelism between conditional mental states and their uncon-26

ditional counterparts. Consider belief for a moment. Unconditional and27

conditional belief must have something in common that makes them both28

beliefs. Whichever way unconditional beliefs connect to desires and inten-29

tions, aim at truth, and are constrained by logic, conditional beliefs should,30

in the same way, connect to conditional desires and conditional intentions,31

aim at conditional truth, and be constrained by logic. Conditional mental32

states obey “parallel” constraints to their unconditional counterparts.33

The instance of parallelism I need concerns the relationship between34

first-order and second-order sureness. For unconditional sureness, I reject35

the 4 axiom but accept 5c, the converse of the 5 axiom:36

4. ◻p ⊃ ◻◻p37

If you are sure that p, you are sure that you are sure that p.38

5c. ◻¬◻p ⊃ ¬◻p39

If you are sure that you are not sure that p, you are not sure that p.40

If conditional and unconditional sureness obey parallel constraints, then if41

5c is true, then so is the parallel principle for conditional sureness:42

C5c. ◻q¬◻q p ⊃ ¬◻q p43

If you are sure given q that you are not sure given q that p, you are44

not sure given q that p.45

However, we can prove 4 from C5c and Mat in a normal background logic.46

I argue that, since 4 is false and C5c is true, we must reject Mat.47

Encountering this argument out of the blue, you should be suspicious.48

What’s so special about 4-failures that should force you to violate Mat?49

Are there other violations of Mat? How do we model conditional sureness50

without Mat? And what about the arguments for Mat? In the second half51

of the paper, I’ll try to answer these questions.52

2 Motivating Mat53

The first order of business is to provide some intuition for what condi-54

tional mental states are, and why one might take them to satisfy Mat.55

Start with some examples. The following utterances would naturally56

be interpreted as reporting my conditional mental states:357

(1) If Snow let the door slam, then I’m sure she left in a hurry.58

(2) If Bar hated the restaurant, then I regret recommending it to her.59

3See Blumberg & Holguı́n (2019), Blumberg & Lederman (2020), and Holguin (2022).
Though see Drucker (2017, forthcoming) for a different take.
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(3) If Tez got a hedgehog, then I’m surprised she didn’t tell me.60

I don’t know whether the antecedents of these conditionals are true. Either61

way, I’m not unconditionally sure that Snow left in a hurry, I don’t uncon-62

ditionally regret recommending the restaurant, and I’m not unconditionally63

surprised that Tez didn’t tell me. The mental states ascribed instead seem64

to be conditional — reporting my state of mind on the supposition that the65

relevant antecedent is true.66

Another way to latch onto conditional mental states is through analo-67

gies. Ramsey (1931 [1926], 170) suggested that your conditional opinions68

are whatever stands to choices between conditional bets as unconditional69

opinions stand to choices between unconditional bets.70

Opinions : Bets :: Conditional Opinions : Conditional Bets

He took a conditional bet to behave like its unconditional counterpart, ex-71

cept that it is void if the supposition fails. The same strategy can of course72

be applied to other candidate functional roles for belief than choosing bets,73

such as aiming at truth, or being regulated by the evidence. The challenge74

then becomes to carve out a “parallel” role for conditional beliefs.75

Analogies like this can sometimes be used to argue for Mat. The clas-76

sic such argument starts from a behaviourist conception of how credences77

are related to bets (and so conditional credences to conditional bets), and78

shows that on pain of exposing yourself to sure losses, your conditional79

credences must satisfy the ratio formula (P(p | q) = P(p ∧ q)/P(q) when80

P(q) > 0). Mat would then follow by a (to my mind, problematic) identifi-81

cation of sureness with credence one. Other arguments of this sort assume82

connections between rational opinions and accuracy or evidence.483

Another way to get a handle on conditional mental states would be to84

reduce them to unconditional mental states. Two prominent version of this85

strategy have been pursued.5 The first identifies conditional mental states86

with mental states with conditional contents. To be sure of p conditional87

on q is to be sure that if q then p (◻q p ≡ ◻(q > p)). Mat then follows88

from Modus ponens (p > q ⊢ p ⊃ q) and Embedded Or-to-If (◻(p ∨ q) ∧89

¬◻p ⊃ ◻(¬p > q)), the principle that if you are sure that p or q, without90

being sure that p in particular, then you are sure that if not p, then q.691

Instances of Embedded Or-to-If sound great: If you’re sure that Turin is92

either in Switzerland or in Italy, and you’re not sure it’s is in Switzerland,93

then you must be sure that it’s in Italy if not Switzerland!794

4See Greaves & Wallace (2006) and Smith (2018).
5Stalnaker (1984, 103) voices both: “To be disposed to accept B on learning A is to accept

B conditionally on A, or to accept that if A, then B.”
6Assume ◻ is normal. Then ◻(q > p) ⊃ ◻(q ⊃ p) by MP and Normality. ◇q ⊃ (◻(q ⊃

p) ⊃ ◻(q > p)) by Embedded Or-to-If. Taking both together, ◇q ⊃ (◻(q > p) ≡ ◻(q ⊃ p)).
7See Stalnaker (1975), Boylan & Schultheis (2022). For critical discussion, see Holguı́n
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Another reduction identifies conditional mental states with plans or95

dispositions to adopt unconditional mental states upon learning (exactly)96

the supposition. If you must plan or be disposed to update by the ratio for-97

mula,8 Mat would again follow if sureness was credence one. Other dispo-98

sitionalists endorse Mat as capturing minimal change: your new opinions99

must differ no more from your old ones than is required to consistently in-100

clude what’s learnt while preserving closure under logical consequence.9101

Of course, minimal change will still have to be motivated somehow.10
102

Since I reject Mat, I will ultimately have to say where these arguments103

for Mat go wrong. But I first want to explain why I reject Mat, in the hope104

that this will put you in the mood to re-evaluate the arguments.105

3 Higher-order Opinions106

I will start by explaining my premises about unconditional sureness: why107

I reject 4 but accept 5c. Since the dialectic surrounding these principles is108

well trodden, I will mostly re-trace a few known ways into my position.109

Why reject 4? Following Williamson (2000), I think there are mundane110

counterexamples to 4. How many typos are there in this paper? You are111

sure that there is at least one typoo, but fortunately not sure there are at112

least 1000. So there is a cut-off: a largest number n such that you are sure113

that there are at least n typos in this paper. You can’t be sure what that114

cut-off is, and so in particular you can’t be sure whether you’re sure that115

there are at least n typos in this paper.11 So 4 is false.116

Not everybody is convinced by Williamson’s argument. If you aren’t,117

you may be interested to hear that having the inner and outer modalities118

in 4 and 5c coincide isn’t essential to my argument. What I really need are119

two modalities, ◻ and ∎, such that the analogous principle 4◻∎ can fail but120

5c
◻∎

holds. To make this concrete, let ‘◻’ express what I am sure of, and ‘∎’121

express what my epistemic peer Ethan is sure of:122

4◻∎. ◻p ⊃ ◻∎p123

If I’m sure that p, then I’m sure that Ethan is sure that p.124

5c
◻∎

. ◻¬∎p ⊃ ¬◻p125

If I’m sure that Ethan isn’t sure that p, then I’m not sure that p.126

(2021), Rothschild & Spectre (2018), Hewson & Kirkpatrick (2022), and §9.1 below.
8See Pettigrew (2020) for an overview, and Teller (1973) and Greaves & Wallace (2006).
9See e.g. Alchourrón et al. (1985), Harper (1975, 230), Stalnaker (2009, 194).

10Harman (1986, 30ff.) thinks our inability to keep track of our reasons for accepting or
intending is crucial in justifying minimal change, whereas Gärdenfors (1988, 49) gestures
at a motivation from the thought that information does not come for free. Stalnaker (2009,
194) suggests that “to fully accept something (to treat it as knowledge) is to [...] continue
accepting it unless evidence forces one to give up something.”

11Williamson (2000, ch. 5)’s argument concerns knowledge, but generalises to sureness
(Boylan & Schultheis, 2022, §IV) and further attitudes (Hawthorne & Magidor, 2009, 2010).
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Even if you accept 5c and 4, you may well accept 5c
◻∎

but reject 4◻∎. Given127

that disagreement among epistemic peers is common, it seems okay for128

me to be sure of something without being sure that Ethan is, too. After all,129

sometimes I am sure of things but then find out that Ethan assesses the130

evidence differently. However, it still seems that if I am sure that my peer131

isn’t sure of something, I should not be sure of it myself. That’s 5c
◻∎

.132

This is all I’ll say against 4 and its bimodal generalisation 4◻∎. If you’re133

unconvinced, you can read much of what follows as a new argument for134

these principles from Mat. I have slightly more to say in defence of 5c.135

First, sureness akrasia simply seems irrational: being sure that (p, but136

I shouldn’t be sure that p). It’s irrational to eat a mushroom when you137

are sure that you shouldn’t. Similarly, it’s irrational to be sure that this138

mushroom is edible when you are sure that you shouldn’t.12 (Recall that139

what you should be sure of is what I’m really interested in.)140

Second, 5c is the weakest principle that rules out being sure of Moorean141

propositions: ones that can be true, but only if you are not sure of them.13
142

Perhaps this explains our intuition that the akratic beliefs are irrational.143

Third, 5c follows from familiar more general principles such as T (◻p ⊃144

p),14 or the claim that you are sure of something only if you are not sure145

that you don’t know it (◻p ⊃ ◇Kp), assuming that knowledge implies146

being sure (Kp ⊃ ◻p).15 If to be sure is to have credence one, 5c follows147

from the thought that when rational agents have credence one that they148

ought not have some opinions, they do not have those opinions,16 or (for149

finite probability spaces) from Dorst (2020)’s Simple Trust (the constraint150

P(p | P(p) ≥ t) ≥ t, where P are the opinions you should have).17 I do not151

assume any of these more general principles, including T, but they still152

suggest that 5c follows from popular theories of rationality.153

12Objection: We can’t trust our intuitions about akrasia. Confidence akrasia also seems
irrational: being confident that (p, but I should not be confident that p). And yet Williamson
(2011) argues that confidence akrasia can be rational when p is a long conjunction of
propositions for which 4 independently fails. Reply: It’s not obvious that you should really
be sure of such long conjunctions. In any case, it is one thing to eat a mushroom when you
are merely confident you shouldn’t, and another when you are sure you shouldn’t.

13See Rieger (2015). Mackie (1980, 91), Joyce (2009, 277), Rosenkranz (2018, 327), and
Smithies (2012, 285) are moved to accept 5c for justified belief by similar considerations.

14See Goodman & Holguı́n (2022); and Williamson (2000, 2011) for certainty.
15Assume ◻ is normal. Necessitating the contraposition of Kp ⊃ ◻p and distributing, we

get ◻¬◻p ⊃ ◻¬Kp, and so by ◻p ⊃ ◇Kp we infer ◻¬◻p ⊃ ¬◻p. Aucher (2015), Holguı́n
(2021, fn.34), Lenzen (1979), Rieger (2015), and Stalnaker (2006) reason in parallel for belief.

16See Christensen (2007, 325)’s Accuracy principle, and Sobel (1987, 69f.).
17If P(p) = 1 but P(P(p) < 1) = 1, then P(p | P(p) < 1) = 1 by the ratio formula. For

P with finite domain there is guaranteed to be ε > 0 with [P(p) < 1] = [P(p) ≤ 1 − ε]
(allowing us to convert < into ≤). Hence we have P(p | P(p) ≤ 1 − ε) = 1 ̸≤ 1 − ε, and by
the rule of subtraction P(¬p | P(¬p) ≥ ε) = 0 ̸≥ ε contradicting Simple Trust.
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4 From 5c to C5c
154

The most distinctive premise of my argument says that if 5c is true, then155

so is a parallel principle for conditional sureness:18
156

C5c. ◻q¬◻q p ⊃ ¬◻q p157

If you are sure given q that you are not sure given q that p, you are158

not sure given q that p.159

In fact, I only need C5c for suppositions that don’t lead to contradiction:19
160

C5c⊥. ¬◻q⊥ ⊃ (◻q¬◻q p ⊃ ¬◻q p)161

My proof will proceed from C5c⊥, but informally I will drop the restriction162

to the non-degenerate case unless it matters.163

I will now argue that we should extend 5c to C5c, first from a general164

parallelism between conditional and unconditional attitudes, and then by165

showing that the motivations for 5c from §3 generalise to C5c.166

4.1 Parallelism167

Conditional and unconditional beliefs must have something important in168

common that makes them beliefs. If it is part of their causal or normative169

role, then unconditional and conditional beliefs must share that part of170

their causal or normative role, and whatever further features result from it171

downstream. We should expect conditional mental state types to be related172

to one another just like their unconditional counterparts — conditional be-173

lief, desire, and intention stand to one another just like unconditional be-174

lief, desire, and intention. We should expect what you believe conditional175

on p to be related to what’s true if p the way what you unconditionally176

believe is related to what’s true simpliciter. Most importantly for my pur-177

poses, we should expect conditional beliefs to be related to one another178

the way unconditional beliefs are related to one another.179

In developing theories of conditional mental states, philosophers have180

often implicitly or explicitly assumed such parallelism. For example, the181

axioms for conditional probability by Popper and Rényi closely mirror the182

Kolmogorov axioms for unconditional probability. Joyce (1999, 234) makes183

it an axiom of his decision theory that conditional likelihoods and pref-184

erences obey the same rationality constraints as unconditional likelihoods185

and preferences.20 Philosophers of mind often assume that conditional and186

18Given the natural assumption that ◻p ≡ ◻⊤p, 5c is a special case of C5c.
19Unrestricted C5c conflicts with Success (◻p p) and CRM (q ⊃ r/◻pq ⊃ ◻pr). Thanks to

[Anonymized] for pointing this out to me.
20See Joyce (1999, 234)’s “Conditional Rationality” axiom, and Bradley (2017, 92).
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unconditional mental states are descriptively similar in important ways.21
187

While it may be hard to state in a general fashion what this parallelism188

amounts to, I think 5c and C5c are, in the relevant sense, parallel.22
189

Parallelism is also supported by the connection between supposing190

and learning. Whatever descriptive or normative generalisations apply to191

being sure, they would still apply if you learnt something new. In particu-192

lar, if you should obey 5c, you should still obey 5c if you learnt something193

new. C5c does not follow from this observation since there are propositions194

that you can suppose true but cannot learn (Stalnaker, 1970, 71).23 Nev-195

ertheless C5c is a good explanation why you should obey 5c if you learnt196

something new: If the opinions you should have upon learning q are the197

opinions you should now have given q, and you should be sure of this198

upon learning q, C5c predicts that you should obey 5c upon learning q.24
199

4.2 Mirroring200

Even if you didn’t like parallelism in general, you should recognize that201

the particular considerations favouring 5c generalize to C5c. Just like sure-202

ness akrasia, conditional sureness akrasia simply seems irrational: being sure203

given q that (p but I should not be sure given q that p).25 Suppose you204

violate C5c: assuming this is a button mushroom, you are sure that (this205

mushroom is edible, but I shouldn’t be sure, on this assumption, that it is206

edible). Though harder to parse, this is just as irrational!207

And as like 5c is the weakest principle that rules out being sure of208

Moorean propositions — propositions which can be true but only if you209

aren’t sure of them — C5c is the weakest principle which rules out being210

21“Offline” mental states are said to resemble their “online” counterparts in character,
functional profile, and neural implementation (Currie & Ravenscroft, 2002, §1.3; Goldman,
2006, 147, 283), and to be manipulated by the same processes (Goldman, 2006, 287; Stich
& Nichols, 2000; Williamson, 2020, §2.2).

22Blumberg & Lederman (2020, fn. 32) suggest, crediting Jeremy Goodman and Matt
Mandelkern, that conditional mental states can be radically introspectively inaccessible.
Say that you believe p relative to question Q iff you believe it conditional on the true
answer to Q. Blumberg & Lederman observe that one can be ignorant (or mistaken) about
whether one believes p relative to Q because one is ignorant (or mistaken) about the true
answer to Q. Their observation is compatible with parallelism: First, the radical lack of
access concerns what one believes relative to a question, not what one believes conditional
on its various answers. Second, their observation suggests only that one may have false
unconstrained beliefs about what one believes relative to a question Q, not that one may
have false beliefs relative to question Q about what one believes relative to question Q. Their
example only motivates radical failures of ◻Q p ⊃ ◻◻Q p, not of ◻Q p ⊃ ◻Q

◻
Q p.

23Lasonen-Aarnio (2015, 153) points out another reason for care: you may not be sure
after learning q that q is what you learnt, and so not sure that the opinions you should
now have are your old ones conditional on q.

24Dorst (2020, 593), Elga (2013, 136), Pettigrew & Titelbaum (2014), and Ross (2006, 283)
argue in parallel for extending other deference principles to conditional opinions.

25C5c follows given the agglomeration principle that if you are sure given p that q and
you are sure given p that r, you are sure given p that q ∧ r ((◻pq ∧ ◻pr) ⊃ ◻p(q ∧ r)).
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conditionally sure of conditionally Moorean propositions — ones which211

can be true, but only if you aren’t conditionally sure of them (see fn. 13).212

Our third batch of motivations derived 5c from general principles, all213

of which (except one) have similarly plausible analogues for conditional214

sureness. For example, C5c follows from the claim that you’re condition-215

ally sure of something only if you aren’t conditionally sure that you don’t216

conditionally know it (◻q p ⊃ ◇qKq p) assuming that conditional knowl-217

edge implies conditional sureness (Kq p ⊃ ◻q p). If sureness implied cre-218

dence one, it would follow from the principle that when you’re condi-219

tionally sure that your conditional opinions should be in a certain range,220

they really are in that range.26 Finally, just like 5c follows from Dorst221

(2020)’s Simple Trust, C5c follows from Dorst’s Trust, i.e. the constraint222

Pq(p | Pq(p) ≥ t) ≥ t (where Pq are the conditional opinions you should223

have).27 (As above, this latter argument assumes finitude, and identifying224

being sure with credence 1.) The point is that the motivations for 5c and225

C5c seem symmetric.226

Of the arguments for 5c from §3, the only one whose analogue for227

C5c is clearly less plausible is that from T. Conditional sureness may be228

conditionally factive in the sense that being sure of p given q implies q ⊃ p,229

but it is not factive in the sense of implying p. Conditional factivity only230

gives us the restriction of C5c to true suppositions (q ⊃ (◻q¬◻q p ⊃ ¬◻q p)).231

This opens up a way to resist my argument: We could consistently accept232

5c as an instance of T, accept Mat, but reject C5c and 4. By accepting C5c
233

for true suppositions, we might hope to explain the appeal of C5c.234

I’m personally not so attracted to this position because I don’t accept235

5c just qua instance of T. Like many others (see fn. 13), I think 5c is plau-236

sible primarily because it rules out being sure of Moorean propositions.237

But suppose we forget about that, how well does the restriction of C5c to238

true propositions capture the appeal of the full strength principle? It can239

explain why you will still obey 5c after you learn something, since what’s240

learned is presumably true. But even if you will never learn the false sup-241

positions, you might not be sure of that, and hence make plans for how to242

update if you learn them. Some of the 4-failure cases relevant to our proof243

are arguably like that.28 If the opinions you plan to have upon learning a244

supposition are the opinions you now have conditional on it, you’ll then245

plan to violate 5c if you learn the supposition. I feel that there remains246

something irrational in such a plan, even if it will never be actualized.247

26Dorst (2020)’s Reaction principle: If Pq(l ≤ Pq(p) ≤ h) = 1 then l ≤ Pq(p) ≤ h.
27Assuming ◻q p ≡ Pq(p) = 1, C5c becomes Pq(Pq(p) < 1) = 1 ⊃ Pq(p) < 1. Suppose

this fails, i.e. Pq(p) = 1 but Pq(Pq(p) < 1) = 1. Then Pq(p | Pq(p) < 1) = 1 by the ratio
formula. For Pq with finite domain there is guaranteed to be ε > 0 with [Pq(p) < 1] =
[Pq(p) ≤ 1 − ε] (allowing us to convert < into ≤). Hence we have Pq(p | Pq(p) ≤ 1 − ε) =
1 ̸≤ 1 − ε, so by the rule of subtraction Pq(¬p | Pq(¬p) ≥ ε) = 0 ̸≥ ε contradicting Trust.

28Just imagine Flipping for Heads from §7 so that you’ll learn whether coin n was flipped.
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For an analogy, consider standard arguments that you should plan to248

update by the ratio formula. Dutch book and accuracy dominance argu-249

ments show that you can be sure that if you plan to update in any other250

way you’ll end up with no more money or accuracy, and you can’t be sure251

that it won’t be less (see Pettigrew, 2020). This is meant to convince us that252

alternative updating plans are irrational, even ones that only depart from253

the ratio formula if you learn something that is in fact false.29 Such alter-254

natives would of course never actually result in less money or accuracy,255

but the point is that you can’t be sure they won’t. By analogy, planning to256

violate 5c on certain false suppositions still strikes me as irrational if you257

can’t be sure that you won’t learn those suppositions.258

5 Normality259

My final and least controversial assumption is Normality: ◻ and (for any260

formula q) also ◻q are normal modal operators. It is a standard multi-261

premise closure principle for conditional and unconditional sureness.30
262

Normality has a lot going for it. Violating it for unconditional sure-263

ness would mean that for some alternative propositions you could be sure264

of, strictly more of them are true and no more false at any world compat-265

ible with what you’re sure of (Hewson, 2021). If sureness was credence266

one, then Normality would follow from the claim that your opinions267

and conditional opinions should be probabilistic (given a normal logic268

for ‘should’).31 If conditional sureness is being sure of the indicative con-269

ditional, Normality for ◻q follows from Normality for ◻ and the RCK270

rule (p > q1 ∧ ... ∧ p > qn ⊢ p > q whenever q1, ...qn ⊢ q, for n ≥ 0).271

What’s more, my argument doesn’t require Normality in full strength.272

It would suffice to assume that if 4 can fail, it can fail for an agent obeying273

Normality. Or even that if 4 can fail, it can fail for an agent obeying the274

instances of Normality in my proof. Nothing in the cut-off counterexample275

to 4 from §3 prevents you from satisfying Normality (as confirmed by the276

usual models of such cases). Even more clearly, nothing prevents you from277

considering my proof, working out the relevant entailments, and hence278

satisfying the relevant instances of Normality. As Williamson (2021, 2)279

puts it, 4 “is not a booby prize for those who are bad at logic.”280

29Suppose your credences are c, but you aren’t sure what they are, and you’ll be told in
an hour. The plan (for any E) to adopt c(· | E) if you learn E will in fact coincide with the
plan to adopt c(· | C = c) if you learn [C = c], and to adopt some random c′ otherwise.

30See Alchourrón et al. (1985), Aucher (2015), Bradley (2017), Goodman & Salow (2025),
Harper (1975), Joyce (1999), Stalnaker (2006, 2009) for Normality-validating theories.

31Suppose your credences should be probabilistic. By the normalization axiom and ne-
cessitation for ‘should’, you should then assign probability 1 to any tautology, ensuring
necessitation for ◻. For K, we use that probability 1 is closed under finite intersection, and
so also under logical consequence in the sense relevant to K.
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6 Deriving 4 from C5c⊥, Mat, and Normality281

With Mat, C5c⊥, and Normality on the table, it is time to prove that they282

entail 4. In fact, as mentioned in §3, we will prove a bi-modal generalisa-283

tion that allows the inner and outer modalities to differ. Consider:284

4◻∎. ◻p ⊃ ◻∎p285

C5c
◻∎

. ◻q¬∎q p ⊃ ¬◻q p286

C5c⊥
◻∎

. ¬◻q⊥ ⊃ (◻q¬∎q p ⊃ ¬◻q p)287

Using the relational semantics for modal logic, we prove that any normal288

modal logic containing all instances of Mat and C5c⊥
◻∎

(or C5c
◻∎

) contains289

4◻∎. The appendix contains a syntactic proof of the same fact.290

A frame F is a tuple ⟨W, R◻, R∎, (Rp
◻)p⊆W , (Rp

∎)p⊆W⟩ where the R∗’s and291

Rp
∗’s are binary relations on the non-empty set W (for ∗ ∈ {◻,∎}, p ⊆ W).32

292

A model M = ⟨F, V⟩ extends a frame F with a valuation V : At → P(W).293

We let ∗ ∈ {◻,∎} throughout to avoid duplication. The semantic clauses294

for atoms and connectives are as usual, plus295

• J∗pKw = 1 iff R∗(w) ⊆ JpK296

• J∗q pKw = 1 iff RJqK
∗ (w) ⊆ JpK297

Here and later, JpK = {w ∈ W | JpKw = 1} is the set of worlds where p is298

true. We call p valid on a frame F iff p is true at all worlds in all models299

M that extend F. A class of frames M characterises a schema X when all300

and only the frames in M validate all instances of schema X.301

As always, Normality is ensured by the structure of Kripke frames.302

Mat is valid on a frame iff whenever there are p-worlds in R∗(w), Rp
∗(w) =303

R∗(w) ∩ p.33 4◻∎, 5c
◻∎

, and 5c⊥
◻∎

are characterised by properties of the rela-304

tions R◻ and R∎ in the usual way (see e.g. Lemmon, 1977, 54):305

32Similar structures were explored in an old draft of Boylan & Schultheis (2022).
33Proof: First let ⟨W, R◻, R∎, (Rp

◻
)p⊆W , (Rp

∎
)p⊆W⟩ with R∗(w) ∩ p ̸= ∅ ⇒ Rp

∗(w) =

R∗(w) ∩ p for all w ∈ W, p ⊆ W. Extend our frame to a model, and let w ∈ W. If R∗(w) ∩
JqK = ∅, then J∗¬qKw = 1 and so trivially J¬∗¬q ⊃ (∗q p ≡ ∗(q ⊃ p))Kw = 1. If R∗(w) ∩
JqK ̸= ∅, then RJqK

∗ (w) = R∗(w) ∩ JqK and so RJqK
∗ (w) ⊆ JpK ⇔ (R∗(w) ∩ JqK) ⊆ JpK, and

so RJqK
∗ (w) ⊆ JpK ⇔ R∗(w) ⊆ Jq ⊃ pK, and so J¬∗¬q ⊃ (∗q p ≡ ∗(q ⊃ p))Kw = 1 also.

Second, consider ⟨W, R◻, R∎, (Rp
◻
)p⊆W , (Rp

∎
)p⊆W⟩ validating ¬∗¬q ⊃ (∗q p ≡ ∗(q ⊃ p)).

Let w ∈ W, p ⊆ W with R∗(w) ∩ p ̸= ∅. We consider V1, V2 such that V1(A) = V2(A) = p
and V1(B) = R∗(w) ∩ p and V2(B) = Rp

∗(w). We know J¬∗¬A ⊃ (∗AB ≡ ∗(A ⊃ B))Kw =
1. On both valuations we have J¬∗¬AKw = 1, so J∗AB ≡ ∗(A ⊃ B)Kw = 1 on both. This
means RJAK

∗ (w) ⊆ JBK ⇔ R∗(w) ⊆ ((W \ JAK) ∪ JBK), and so RJAK
∗ (w) ⊆ Vj(B) ⇔

(R∗(w)∩ JAK) ⊆ Vj(B). For V1 this reduces to Rp
∗(w) ⊆ (R∗(w)∩ p), for V2 this reduces to

(R∗(w) ∩ p) ⊆ Rp
∗(w), and so Rp

∗(w) = (R∗(w) ∩ p).
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Name Axiom Condition on R∗
4◻∎ ◻p ⊃ ◻∎p transitive◻∎ ∀xyz(R◻xy ∧ R∎yz → R◻xz)
5c
◻∎

◻¬∎p ⊃ ¬◻p condescending◻∎ ∀x∃y(R◻xy ∧ ∀z(R∎yz → R◻xz))
5c⊥
◻∎

¬◻⊥ ⊃
(◻¬∎p ⊃ ¬◻p)

weakly
condescending◻∎

∀x(∃yR◻xy →
∃y(R◻xy ∧ ∀z(R∎yz → R◻xz)))

306

Observe that weak condescension◻∎ weakens also transitivity◻∎. Unsur-307

prisingly, the analogous constraints for ◻q and ∎q are characterised by308

analogous properties of the relations Rq
◻ and Rq

∎:34
309

Name Axiom Condition on Rq
∗

C4◻∎ ◻
q p ⊃ ◻q

∎
q p transitive◻∎ ∀q∀xyz(Rq

◻
xy ∧ Rq

∎
yz → Rq

◻
xz)

C5c
◻∎

◻
q¬∎q p ⊃ ¬◻q p condescending◻∎ ∀q∀x∃y(Rq

◻
xy∧∀z(Rq

∎
yz → Rq

◻
xz))

C5c⊥
◻∎

¬◻q⊥ ⊃
(◻q¬∎q p ⊃ ¬◻q p)

weakly
condescending◻∎

∀q∀x(∃yRq
◻

xy →
∃y(Rq

◻
xy ∧ ∀z(Rq

∎
yz → Rq

◻
xz)))

310

These characterisations show why C5c
◻∎

and C5c⊥
◻∎

entail 4◻∎ given Mat.35
311

Suppose that 4 is invalid on a frame, and so R◻ and R∎ fail to be transitive◻∎,312

i.e. there are worlds w, v, u such that R◻wv and R∎vu but not R◻wu:313

w
... ...

v u

R◻ R∎

R◻
314

We pick our restriction as q = {v, u} to ‘zoom in’ on the failure of transitiv-315

ity. By the characterisation of Mat, since there are q-worlds in R◻(w) and316

R∎(v), we know Rq
◻(w) = R◻(w) ∩ q and Rq

∎(v) = R∎(v) ∩ q. We visualise317

Rq
◻ and Rq

∎ by marking q black, and deleting arrows to ¬q-worlds:318

34I establish correspondence for C5c⊥
◻∎

, the other proofs are similar. First consider F =

⟨W, R◻, R∎, (Rp
◻
)p⊆W , (Rp

∎
)p⊆W⟩ where Rq

◻
and Rq

∎
satisfy weak condescension◻∎ for all

q ⊆ W. Consider M = ⟨F, V⟩, and suppose J¬◻q⊥Kw = 1. Then RJqK
◻

(w) ̸= ∅, and hence

by weak condescension◻∎ there is v ∈ RJqK
◻

(w) s.t. RJqK
∎

(v) ⊆ RJqK
◻

(w). Now if J◻q pKw = 1

then RJqK
◻

(w) ⊆ JpK, and so RJqK
∎

(v) ⊆ JpK, and so J◇q
∎

q pKw = 1.
Now let F = ⟨W, R◻, R∎, (Rp

◻
)p⊆W , (Rp

∎
)p⊆W⟩ where Rq

◻
and Rq

∎
fail to be weakly

condescending◻∎ for some q ⊆ W, i.e. there is w ∈ W s.t. Rq
◻
(w) ̸= ∅ and yet for

all v ∈ Rq
◻
(w), Rq

∎
(v) ̸⊆ Rq

◻
(w). Consider V s.t. V(A) = Rq

◻
(w) and V(B) = q. Then

J¬◻B⊥Kw = 1 since Rq
◻
(w) ̸= ∅. And J◻B AKw = 1 for trivially Rq

◻
(w) ⊆ Rq

◻
(w). But

J◻B¬∎B AKw = 1 since for all v ∈ Rq
◻
(w), Rq

∎
(v) ̸⊆ Rq

◻
(w), in violation of C5c⊥

◻∎
.

35The characterisations also make it easy to check that C5c
◻∎

and C5c⊥
◻∎

are consistent
with Mat and Normality. To get models of C5c⊥

◻∎
, start from a transitive◻∎ Kripke frame

and define Rp
∗(w) := R∗(w)∩ p. For C5c, start from a transitive◻∎ Kripke frame and define

Rp
∗(w) :=

R∗(w) ∩ p, if R∗(w) ∩ p ̸= ∅
{w}, if R∗(w) ∩ p = ∅ and w ∈ p, or p = ∅
p, otherwise

This makes Rp
◻

and Rp
∎

serial and transitive◻∎ for all p, and so condescending◻∎.
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w
... ...

v u

Rq
◻ Rq

∎

Rq
◻

319

Weak condescension◻∎ fails: Rq
◻(w) ̸= ∅ and yet for all x ∈ Rq

◻(w),320

Rq
∎(x) ̸⊆ Rq

◻(w). (v is the only x ∈ Rq
◻(w), and u ∈ Rq

∎(v) but u /∈321

Rq
◻(w).) A transitivity◻∎-failure for R◻ and R∎ becomes a failure of weak322

condescension◻∎ once we ‘zoom in’ on Rq
◻ and Rq

∎.323

So Mat and C5c⊥
◻∎

entail 4◻∎ given Normality. In particular, if the two324

modalities are identified (◻ = ∎), Mat and C5c⊥ entail 4 given Normality.325

Since I reject 4 but accept C5c and Normality for the reasons set out in326

§§1-5, I conclude that Mat has to go. In the next sections, I will explain327

why 4-failures lead to Mat-violations, propose an alternative model of328

conditional sureness, and consider the implications of rejecting Mat.329

7 Convergence with intuitions330

In this section, I try to explain intuitively why 4-failures put pressure on331

Mat, and compare the intuitions to some existing counterexamples to Mat.332

Mat can easily be seen to be equivalent to the triad:36
333

Restricted Success. ◇p ⊃ ◻p p334

Preservation. ◻p ∧◇q ⊃ ◻q p335

Frontloading. ◻q p ⊃ ◻(q ⊃ p)336

Any counterexample to Mat will have to undermine one of these princi-337

ples. I think 4-failure cases put pressure on Preservation.338

On the supposition that your unconditional opinions are misguided, it339

is intuitively irrational to form your conditional opinions by “minimally340

changing” your unconditional opinions to accommodate the supposition.341

After all, on this supposition you take them to be misguided.342

Since Mat is meant to precisify “minimal change” for sureness, one343

would expect similar considerations to put pressure on Mat. While this344

may not have been transparent, this is indeed what my argument from the345

last section does. Fortunately, it turns out that it can be put in more intu-346

itive terms if we assume T — that you should be sure of something only if347

it is true. (The official proof shows that this assumption is inessential, but348

at the cost of complicating the supposition considered.)349

36Frontloading for knowledge is discussed by Chalmers (2012, 162), Bacon (2014, 2020);
Goodman & Salow (2023), and for belief by Goodman & Salow (2025). Preservation is fa-
miliar from belief revision (see Gärdenfors, 1988, 157, Harper, 1975, 230).
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Let’s conceive of unconditional and conditional me as two people, Un350

and Con. Un is caught in a 4-failure: Un should be sure that p, but should351

not be sure that Un should be sure that p. What separates Con from Un is352

that Con supposes that Un shouldn’t be sure that p. Con might reason:353

Con’s reasoning354

My supposition, that Un shouldn’t be sure that p, cannot be evidence355

for p, as it follows from the negation of p by T.37 So:356

(P1) If Un shouldn’t be sure that p, then I shouldn’t be sure that p.
(P2) Un shouldn’t be sure that p.
(C) So I, Con, shouldn’t be sure that p.

357

Con thus concludes that Con shouldn’t be sure that p. But then (by C5c) Con358

shouldn’t be sure that p. But now note that this violates Preservation. Since359

Un should be sure that p, and Un shouldn’t be sure that the supposition is360

false, Preservation (and so Mat) says that Con should be sure that p, too.361

Diagnosis: Where 4 fails, certain suppositions are consistent with what362

you should be sure of, but also make you sure that you shouldn’t be sure363

of something that you in fact should be sure of. You then shouldn’t remain364

sure on the suppositions in question, and so Preservation and Mat fail.365

Inductive knowledge can result in similar Preservation failures:38
366

Flipping for Heads. 1000 fair coins were flipped one after another last night,367

until one landed heads or all were flipped. You know about this set-368

up, but have not heard anything more. In fact, the first landed heads.369

If you are like me, you will be sure that not all coins were flipped. Let n be370

the largest x such that you are not sure that the xth coin was not flipped.371

By the choice of n, you are sure that the n + 1th coin was not flipped, but372

you are not sure that the nth coin was not flipped. But — contra Preserva-373

tion — on the supposition that the nth coin was flipped, you’d better not374

be sure that the n + 1th coin wasn’t flipped. After all, if the nth coin was375

flipped, it only needed to land tails and the nth coin would be flipped.376

When you’re sure of something that’s not evidentially certain but suf-377

ficiently likely, you should no longer be sure on suppositions conditional378

on which it is significantly less likely. I propose that when 4 fails, the sup-379

position that you shouldn’t be sure that p is this sort of supposition.380

Goodman & Salow (2025) surprisingly argue that Frontloading also fails381

in Flipping for Heads. (They are concerned with a version of the principle382

for learning, but I will translate their argument to the case of supposing.39)383

37This step is not obviously okay, but definitely okay if Frontloading holds.
38From Dorr et al. (2014), similar counterexamples to Preservation are discussed by Hall

(1999); Goldstein & Hawthorne (2021); Goodman & Salow (2018, 2023, 2025).
39Frontloading holds on the theory of supposing Goodman & Salow (2025) sketch in

appendix D.3, but at the cost of losing parallelism: for them, conditional sureness isn’t
related to conditional evidential probability the way unconditional sureness is to uncondi-
tional evidential probability.
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Recall that n is the largest x such that you’re not sure that coin x wasn’t384

flipped. You have almost but not quite enough evidence to warrant being385

sure that coin n wasn’t flipped. What should you think about coin n on386

the supposition that coin n + 1 wasn’t flipped? The information that coin387

n + 1 wasn’t flipped is additional evidence that coin n wasn’t flipped. So388

perhaps on the supposition that coin n + 1 wasn’t flipped, you should389

be sure that coin n wasn’t flipped. This violates Frontloading: While you390

should be sure of [n not flipped] given [n + 1 not flipped], you shouldn’t391

be sure of the material conditional [n + 1 not flipped] ⊃ [n not flipped].392

These judgements are not beyond doubt, but they are intuitive and fit393

with natural models of the case. In the next section, I will use them as a394

starting point for a Mat-invalidating theory of conditional sureness.395

8 A positive story396

My main aim in this paper is not to offer a positive theory, but to argue397

against Mat. However, rejecting Mat with nothing to replace it would398

be problematic. As a proof of concept, I shall sketch a positive model of399

conditional opinions which invalidates Mat and 4 but validates C5c⊥.400

My model is intended to capture an interpretation of ⌜you should be401

sure that p⌝ roughly equivalent to ⌜you are in a position to know that402

p⌝, and hence has the feature that you should only ever be sure of truths.403

The sense of ‘should’ I have in mind is roughly the sense in which oth-404

ers maintain that you should be sure only of what you know (Goodman405

& Holguı́n, 2022), and more broadly the one operative in discussions of406

norms of belief. Of course even if you don’t think there is such an inter-407

pretation, or are simply interested in a different interpretation, my model408

still establishes the consistency of the principles I have defended — a job409

that only gets harder by adding T (◻p ⊃ p).410

I assume that any proposition p has a (unique, precise) evidential prob-411

ability P(p) measuring how likely p is on your evidence. I take these evi-412

dential probabilities to determine what you should be sure of, but in a way413

where you should sometimes be sure of things that are less than eviden-414

tially certain.40 Your conditional evidential probabilities will be assumed415

to analogously determine what you should be conditionally sure of:416

Sureness : Evidential Probability
:: Conditional Sureness : Conditional Evidential Probability

To keep things simple, we do not allow the evidential probabilities to vary417

from world to world, though a more realistic model should presumably418

40See Goodman & Salow (2021, 2023, 2025) and Goldstein & Hawthorne (2021).
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allow for such variation, too. Instead, variation in what you should be sure419

of is, in our model, driven by variation in the underlying facts.420

In line with Normality, I will assume that what you should be (condi-421

tionally) sure is closed under logical consequence, and can thus be repre-422

sented by a set of possible worlds — those where everything you should423

be (conditionally) sure of is true. That set of worlds should plausibly be424

upward closed: if you shouldn’t be sure at w that you’re not in world v,425

and u is at least as likely on your evidence as v, then you shouldn’t be426

sure at w that you’re not in world u. (If v ∈ R(w) and P({u}) ≥ P({v}),427

then u ∈ R(w). For simplicity, we take W to be finite, so we can work with428

probabilities rather than densities.)429

Which upward closed set represents what you should be sure of? For430

any w ∈ W, consider the downset ↓w = {v ∈ W | P({w}) ≥ P({v})}431

of worlds no more likely than w.41 Following Goodman & Salow (2021),432

we say that you should be sure at w that you’re not at v just in case ↓v is433

sufficiently less likely than ↓w. That is, for s ∈ (0, 1), we then define the434

strongest thing you should be sure of as435

R(w) = {v ∈ W | P(↓v)/P(↓w) ≥ s}

That is, you’re not sure at w that you’re not at v just in case the probability436

that you’re in v or a world no more likely than it, is not much smaller than437

the probability that you’re in w, or a world no more likely than it.438

The distinctive feature of my model is that in order to define what you439

should be sure of conditional on p, we replace W with p and the uncon-440

ditional evidential probability P(·) with Pp(·) = P(· | p), the evidential441

probability conditional on p. In particular:442

Rp(w) := {v ∈ p | Pp(↓v)/Pp(↓w) ≥ s}

(What if P(p) = 0, and so Pp(·) is undefined? For concreteness, I shall say443

that Rp(w) = ∅ whenever P(p) = 0, but it doesn’t really matter.)444

This model of rational sureness is constrained. It respects Normality445

and Success (◻p p), and for worlds rational (conditional) sureness is upward446

closed in (conditional) probability. The model also validates 5c and C5c⊥.447

5c is valid since T is. And C5c⊥ is valid since Rq is weakly condescending:448

if Rq(w) is non-empty, then for the most likely q-world v, we automatically449

have that Rq(v) ⊆ Rq(w) and v ∈ Rq(w).42 A similar argument establishes450

the validity of ◻q
◻

q p ⊃ ◻q p, a positive counterpart to C5c.43 The model451

41↓w is the downset of w in the poset ⟨P,≤⟩, for w ≤ v := P({w}) ≤ P({v}).
42Proof: If ¬◻q⊥ is true at w, then Rq(w) ̸= ∅. Since W is finite, we can thus find a

world v ∈ Rq(w) with Pq({v}) ≥ Pq({u}) for all u ∈ W. Clearly Rq(v) ⊆ Rq(w) since
Pq(↓v) ≥ Pq(↓w) since ↓v ⊇ ↓v. So Rq is weakly condescending, and hence C5c⊥ holds.

43Proof: The principle is characterised by the property of density: if Rqxz then there is
y ∈ Rq(x) with Rqxy and Rqyz. If Rq(w) = ∅, density is vacuously satisfied. Otherwise,

15



also predicts that you should never be sure of p on the supposition that452

you shouldn’t be except in degenerate cases (¬◻¬◻p⊥ ⊃ ¬◻¬◻p¬◻p).44
453

Though constrained, the theory invalidates Mat and 4. Consider a454

model of Flipping for Heads where the evidential probabilities are just the455

chances. That is where wn is the world where the nth coin lands heads,456

P({wn}) = 1/2n and so P(↓wn) = 1/2n−1. For concreteness, assume that457

s = 1/64 = 1/26. Then the last coin for which you shouldn’t be sure that458

it wasn’t flipped is coin 7, that is R(w1) = {wi ∈ W | i ≤ 7}.459

For the counterexample to Preservation, consider what you should think460

on the supposition that coin 7 was flipped. The supposition corresponds461

to the proposition [≥ 7] := {wi | i ≥ 7}, and462

R[≥7](w1) = {wi | P[≥7](↓wi)/P[≥7](↓w1) ≥ 1/64}
= {wi | 7 ≤ i ≤ 13}

Unconditionally you should be sure that coin 8 wasn’t flipped but unsure463

if coin 7 was flipped (R(w1) ⊆ [≤ 7] but R(w1) ∩ [≥ 7] ̸= ∅). And yet, on464

the supposition that coin 7 was flipped, you shouldn’t be sure that coin 8465

wasn’t flipped (R[≥7](w1) = {wi | 7 ≤ i ≤ 13} ̸⊆ [≤ 7]). Preservation fails.466

What about Frontloading? You should unconditionally be sure that coin467

8 wasn’t flipped but unsure if coin 7 was flipped (R(w1) = [≤ 7]). So468

you should not be sure of the material conditional [≤ 7] ⊃ [≤ 6]. Still, on469

the supposition that coin 8 wasn’t flipped, you should be sure that coin470

7 wasn’t flipped either (R[≤7](w1) = [≤ 6]).45 This is the counterexample471

to Frontloading from above. These failures of Preservation and Frontloading472

are of course also failures of Mat. (Preservation and Frontloading do still473

hold under certain restricted conditions, capturing the thought that these474

principles are good approximations in a lot situations.46)475

4 also fails. For example, you should be sure that the 8th coin isn’t476

flipped, but you shouldn’t be sure that you should be sure of this. For you477

since W is finite, we can find a world v ∈ Rq(w) with Pq({u}) ≥ Pq({v}) for all u ∈ W.
Clearly Rq(w) ⊆ Rq(v) (since Pq(↓w) ≥ Pq(↓v)), and so if Rqwu then Rqwv and Rqvu.

44If P({v | R(v) ̸⊆ p}) > 0, then for all w ∈ W, R{v|R(v) ̸⊆p}(w) ̸⊆ p). Proof: Let X :=
{v | R(v) ̸⊆ p}, and let v be a maximally likely X-world, and u be a maximally likely
¬p-world. (Each exists by finitude, since P(X) > 0 and so X and ¬p are non-empty.) We
show that u ∈ R(w):

PX(↓u)
PX(↓w)

=
P(↓u ∩ X)

P(X)
· P(X)

P(↓w ∩ X)
=

P(↓u ∩ X)

P(↓w ∩ X)
≥ P(↓u ∩ X)

P(↓v ∩ X)
=

P(↓u)
P(↓v)

> s

(We know (↓w ∩ X) ⊆ (↓v ∩ X) since v is maximal in X, and ↓v ∩ X = ↓v since v ∈ X and
x is downward closed (and by the same reasoning ↓u ∩ X = ↓u).)

45R[≤7](w1) = {v | P[≤7](↓v)/P[≤7](↓w1) ≥ 1/64} = {v | P[≤7](↓v) ≥ 1/64} = {wi |
(1/2i−1 − 1/27)/(1 − 1/27) ≥ 1/64} = {wi | 1 ≤ i ≤ 6}.

46Preservation holds for suppositions q with P(q | ↓w) < P(q | W \ R(w)). Frontloading
holds when P(↓w)/P(↓v) ≥ Pq(↓w)/Pq(↓v) for some least likely world v ∈ R(w).
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shouldn’t be sure that the 7th coin isn’t flipped (R(w1) = [≤ 7]), and in478

the world where the 7th coin is flipped, you shouldn’t be sure that the 8th479

coin isn’t flipped (R(w7) = [≤ 13]).47
480

Upshot: Natural models of conditional opinions validate Normality,481

C5c⊥, and Restricted Success but invalidate 4, Mat, Preservation, and Front-482

loading. The models show not only that our package of principles is con-483

sistent, but also give us a grip on what conditional opinions might be like484

in the absence of Mat. While the particulars of how sureness is taken to485

be determined by evidential probability would require more motivation, I486

hope that the general strategy of taking conditional sureness to be deter-487

mined in parallel by conditional evidential probability to be plausible.488

9 Implications489

I’ve explained why I reject Mat, and how I think about conditional sure-490

ness instead. In this final section, I will explore the implications of my491

result for indicative conditionals, the logic of knowledge, and being deter-492

mined to do something, connecting it to existing literature on these topics.493

9.1 Embedded Or-to-If494

One way to understand conditional sureness is as being sure of the in-495

dicative conditional (which we will write as ‘>’). On this interpretation,496

Frontloading follows from Modus Ponens (p > q ⊢ p ⊃ q) and Normality,497

and Preservation and Weak Success are the well-known principle498

Embedded Or-to-If. ◻(p ∨ q) ∧◇¬p ⊃ ◻(¬p > q)499

Holguı́n (2021) objects to Embedded Or-to-If by showing that together500

with background principles WCNC (◇p ⊃ ¬(p > q ∧ p > ¬q)) and Shift-501

Factivity (◻(◻p ⊃ p)) it entails (in a normal modal logic)48 the principle502

No Opposite Materials. ◇p ∧ ◻(p ⊃ q) ⊃ ¬◇(◇p ∧ ◻(p ⊃ ¬q))503

But, Holguı́n (2021) argues, No Opposite Materials fails in certain natural504

models of 4-failure motivated by Williamson (2000).49
505

My result structurally resembles Holguı́n’s: both show that a princi-506

ple connecting unconditional to conditional sureness (Mat or Embedded507

Or-to-If ) plus plausible background conditions implies an introspection508

47R(w7) = {wi | P(↓wi)/P(↓w7) ≥ 1/26} = {wi | 1/2(i−1) ≥ 1/212} = {wi | i ≤ 13}.
48Suppose ◇p ∧ ◻(p ⊃ q) ∧◇(◇p ∧ ◻(p ⊃ ¬q)). By Embedded Or-to-If and Normality,
◇p ∧ ◻(p > q) ∧◇(◇p ∧ ◻(p > ¬q)). By Shift-Factivity, ◇p ∧ ◻(p > q) ∧◇(◇p ∧ (p >
¬q)). By Normality, ◇((p > q)∧◇p ∧ (p > ¬q)). By WCNC, ◇⊥, and so ⊥ by Normality.

49E.g. the model W = {w1, w2, w3, w4} with R(wi) = {wj | |i − j| ≤ 1} and V(p) =

{w1, w4} and V(q) = {w1}, where at w2 we have ◇p ∧ ◻(p ⊃ q) ∧◇(◇p ∧ ◻(p ⊃ ¬q)).
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principle (4 or No Opposite Materials). But there are also differences.The509

epistemic consequence derived in my result is stronger — 4 entails No Op-510

posite Materials given Normality, but not the other way around.50 Indeed,511

natural models of sureness, e.g. those in §8 above and the appearance-512

reality models from Williamson (2013), validate No Opposite Materials but513

invalidate 4.51
514

A second difference concerns a popular weakening of Embedded Or-to-515

If, which removes the ◻ from the consequent:516

Popular Or-to-If. ◻(p ∨ q) ∧◇¬p ⊃ (¬p > q)517

Both the strict conditional and Stalnaker (1968)’s variably strict conditional518

validate this principle.52 However, reasoning similar to my result shows519

it to still entail ◻p ⊃ (◻◻p ∨◇◻◻p) given C5c⊥ and weak background520

assumptions.53 (The background assumptions are And-to-If (p ∧ q/p > q),521

Identity (p > p), Modus Ponens (p > q/p ⊃ q), and Normality.) Since this522

principle is arguably not much more plausible than 4, I think we should523

reject this weakening, too, assuming conditional sureness really coincides524

with being sure of the indicative conditional.54
525

50
◻(p ⊃ q) ⊢K4 ◻◻(p ⊃ q) by 4, and ◇p ∧ ◻(p ⊃ ¬q) ∧ ◻(p ⊃ q) ⊢K4 ⊥ by PC and

Normality, and so ◻◻(p ⊃ q) ⊢K4 ¬◇(◇p ∧ ◻(p ⊃ ¬q)) by Normality. So ⊢K4 ◻(p ⊃
q) ⊃ ¬◇(◇p∧◻(p ⊃ ¬q)). For a frame validating No Opposite Materials but not 4, consider
W = {w1, w2, w3} with R(wi) = {wj | |i − j| ≤ 1}.

51No Opposite Materials is characterised by restricted convergence: when transitivity fails
(Rxy∧ Ryz∧¬Rxz), the middle world sees no less than the first (R(x) ⊆ R(y)). The models
from §8 are restricted convergent because transitivity fails only for worlds ordered by
probability (Rxy∧ Ryz∧¬Rxz only if P(x) > P(y) > P(z), implying R(x) ⊆ R(y) ⊆ R(z)).
(Proof: First, suppose a restricted convergent frame has◇p∧◻(p ⊃ q)∧◇(◇p∧◻(p ⊃ ¬q)
true at x. Then there are y ∈ R(x) and z ∈ R(y) such that p ∧ ¬q is true at z and p ⊃ ¬q
is true throughout R(y). But p ∧ ¬q is false throughout R(x), so not z /∈ R(x). There is
also w ∈ R(x) where p ∧ q is true. By restricted convergence, w ∈ R(y). But p ∧ q is true
at w, and false throughout R(y). Contradiction. Now suppose that a frame isn’t restricted
convergent, i.e. there are x, y, z, w s.t. Rxy ∧ Ryz ∧ ¬Rxz and Rxw but not Ryw. Then let
JpK = {w, z} and q = {w}. At x, we have ◇p ∧ ◻(p ⊃ q) ∧◇(◇p ∧ ◻(p ⊃ ¬q)).)

52The principle is explicitly accepted by Hewson & Kirkpatrick (2022), while Holguı́n
(2021) and Rothschild & Spectre (2018) retreat to a close variant which strengthens an-
tecedent and consequent of my principle with a box: ◻(◻(p ∨ q) ∧◇¬p) ⊃ ◻(¬p > q).

53Let q := (p ⊃ ¬◻p), and suppose for a contradiction ◻p∧¬◻◻p∧¬◇◻◻p. Expanding
the first conjunct we have ◻((¬◻p ∧ p) ∨ (◻p ∧ p)), and so ◻((q ∧ p) ∨ (◻p ∧ p)) by PC
and Normality, and hence ◻((q > p) ∨ (◻p ∧ p)) by And-to-If. Now we turn to the right
disjunct. Combining it with the third conjunct from above (¬◇◻◻p), we get ◻((q > p) ∨
(◻p ∧◇¬◻p)) by Normality, and so ◻((q > p) ∨ (◻(¬q ∨ p) ∧◇q)). By Popular Or-to-If,
this implies ◻((q > p) ∨ (q > p)) which simplifies to (*) ◻(q > p). But we have ◻(q > q)
by Identity and Normality, and so ◻(q > (p ⊃ ¬◻p)) by rewriting. Combining with (*),
we have ◻(q > ¬◻p) by Normality. But (q > p) ⊢ (q ⊃ p) ⊢ p by MP and propositional
logic, so ¬◻p ⊢ ¬◻(q > p) by Normality. We thus infer ◻(q > ¬◻(q > p)). ¬◻(q > ⊥)
holds as otherwise ◻(q > ⊥) ⊢ ◻¬q ⊢ ◻¬(p ⊃ ¬◻p) ⊢ ◻◻p in contradiction to the second
conjunct. Hence we can apply C5c⊥ to infer ¬◻(q > p), contradicting (*) above.

54Though see Goldstein (2022), who defends the principle ◻p ⊃ ◇◻◻p for knowledge.
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9.2 Abominable conditionals526

Dorst (2019) uses Embedded Or-to-If to argue for 4 for knowledge. Glossing527

over some details, Dorst’s argument is this: Suppose I know that Turin is528

in Italy without knowing that I know this (◻p ∧ ¬◻◻p). Then I can know529

that (either I know that Turin is in Italy, or Turin is in Italy) by disjunction530

introduction (◻(◻p ∨ p)), and for all I know I don’t know that Turin is in531

Italy (◇¬◻p). Hence by Embedded Or-to-If, I know:532

(4) #If I don’t know that Turin is in Italy, Turin is in Italy. (¬◻p > p)533

But that’s a very weird thing to say! Since I can generally say what I know,534

Dorst concludes that I don’t know (4), and so 4 must be true.535

Because I reject Embedded Or-to-If, I want to resist the argument that if 4536

fails then (4) is known. But we can do more. When we interpret the models537

from §8 in terms of knowledge, they rule out knowing p on the supposition538

that I don’t know p in all but degenerate cases (¬◻¬◻p⊥ ⊃ ¬◻¬◻p p, see539

fn. 44). If knowing a conditional requires conditional knowledge, abom-540

inable conditionals such as (4) then cannot be known, and so plausibly not541

asserted.55 Our models thus suggest a way for 4-deniers to predict that542

abominable conditionals are unknowable.56
543

I take (4) to be a “junk conditional” like (5) and (6) — one whose544

antecedent is a defeater for my knowledge of its consequent.57
545

(5) Context: I’m looking at a red wall in normal conditions.546

#If there is trick lighting, the wall is red.547

(6) Context: n is the last coin which will be flipped for all I know.548

#If coin n was flipped, it did not land tails.549

Junk conditionals are unassertable because you fail to know their conse-550

quent conditional on the antecedent (Sorensen, 1988; Jackson, 1979). To551

predict this, we need Preservation to fail, as on our theory from §8.552

9.3 Being determined to φ553

Just as you can believe or be sure of something on a supposition, you can554

also intend or be determined to do something on a supposition.58 My argu-555

ment against Mat extends to mental states with a world-to-mind direction556

55Or at least asserting conditionals sounds weird when one fails to know the consequent
conditional on the antecedent (Jackson, 1979; Sorensen, 1988; Williamson, 2020).

56Fraser (2022) and Hewson & Kirkpatrick (2022) argue that while abominable condi-
tionals are known when 4 fails, they are unassertable for irrelevance reasons.

57See Hawthorne & Isaacs (2024).
58See Ferrero (2009), Gibbard (2003, 48ff.), Velleman (1997). There seem to be two sorts

of supposition in the practical realm. I can consider which subway to take assuming the
F isn’t stopping at 7th Ave, or assuming I want to get to Harlem. The former supposition
seems to add to my evidence, the latter to my objectives. I will focus on the former.
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of fit such. I will focus on being determined to because I take it to stand to557

intending roughly as being sure stands to believing. Using φ, χ, ψ as variables558

for non-finite clauses, and ‘D’ for ‘you’re determined to’, consider559

MatD. ¬D¬ψ ⊃ (Dψ φ ≡ D(ψ ⊃ φ))560

If you aren’t determined not to ψ, then you’re determined to φ if you561

ψ just in case you’re determined to either not ψ or φ.562

4D. Dφ ⊃ DDφ563

If you’re determined to φ, you’re determined to be determined to φ.564

5c
D. D¬Dφ ⊃ Dφ565

If you’re determined not to be determined to φ, then you do are not566

determined to φ.567

Just as for sureness, 5c
D seems plausible but 4D dubious. For one thing,568

4D but not 5c
D seems to require always considering whether to decide to569

φ when considering whether to φ. For another, consider the connection570

between deliberating what to do and what you will do. Writing ‘◻’ for571

‘you are sure that’ and ‘W ’ for ‘you will’, I assume that when φ is “clearly572

under your control”, we have:59
573

Link. Dφ ≡ ◻Wφ574

You decide to φ iff you are sure that you will φ.575

Link allows us to argue for 4D and against 5c
D from parallel assump-576

tions about sureness. Writing ‘∎’ to abbreviate ‘W◻’ as in ‘you will be sure577

that’, we can derive 5c
D from 5c

◻∎
— the principle that if you are sure now578

that you will not be sure, you are not sure now.60 Similarly, 4D can fail if579

4◻∎ can fail for propositions about whether you will do something clearly580

in your control — if you can be sure that you will φ without being sure581

that you will be sure that you will φ.61
582

So let’s suppose 5c
D holds but 4D fails. My argument kicks in: if we583

accept 5c
D, we should also accept its analogue C5c

D for conditional deci-584

sions.62 But C5c
D and MatD entail 4D given Normality. So MatD fails.585

59Goodman & Holguı́n (2022, n.30) credit Kyle Blumberg for drawing this connection.
The restriction is required since you’re sure that you will die, but not determined to die.
Alternatively, one could try linking deciding to φ to being sure that you should φ. See
Gibbard (2003, 17): “Thinking what I ought to do amounts to deciding what to do.”

60We assume that when φ will not be, it’s not that φ will be (Pull. W¬φ ⊃ ¬Wφ). Proof:
D¬Dφ implies ◻W¬◻Wφ by Link and Normality, and so ◻¬W◻Wφ = ◻¬∎Wφ by
Pull, which in turn implies ¬◻Wφ = Dφ by 5c

◻∎
and Link.

61If ◻Wφ ∧ ¬◻∎Wφ, then Dφ ∧ ¬DDφ by Link and Normality, contrary to 4D.
62Ferrero (2009, 711f.): “conditional intentions are under exactly the same requirements

as unconditional intentions.”
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9.4 Sureness and Cartesian Certainty586

Finally, let us return to the interpretation of ◻ that has been my focus in587

this paper: being sure. On this interpretation, Mat says that what you’re588

sure of on a supposition should differ as little as logic permits from what589

you’re unconditionally sure of. You should stop being sure of things you’re590

unconditionally sure of only if inconsistency threatens otherwise, and you591

should become sure of new things only if they are logical consequences of592

the supposition and what you should be unconditionally sure of.593

But inconsistency is not the only kind of incoherence, as Harman (1986)594

points out. Some propositions are consistent although I shouldn’t ever be595

sure that they are true. For example, I shouldn’t ever be sure that (p but596

I shouldn’t be sure that p).63 Similarly, some propositions are consistent597

although I shouldn’t ever be conditionally sure that they are true. For598

example, I shouldn’t ever be sure on the supposition that q that (p but on599

the supposition that q, I shouldn’t be sure that p). I reject Mat because600

when 4, it forces you to have such consistent but incoherent conditional601

opinions.602

Once we recognize Mat to fail where it forces you into incoherent con-603

ditional opinions, we should be open to the idea that it fails elsewhere,604

too. And indeed, Mat also seems to fail when you should be sure of some-605

thing that is less than evidentially certain, and could hence be undermined606

by further experience — as in Flipping for Heads. On reflection, I think 4-607

failure cases, and really virtually everything non-trivial that we should be608

sure of, is like this. Unlike Cartesian absolute certainty, what you should609

be sure of in the ordinary sense can be undermined by further experience.610

Of course, we could nevertheless interpret ‘◻’ as ‘You should be ab-611

solutely certain that’, and Mat would then look more plausible.64 But on612

such a demanding conception of certainty, the usual arguments against 4613

are no longer compelling, either, since you arguably should not be abso-614

lutely certain that there are at least n typos in this paper for any n > 0.615

My central assumption is that unconditional and conditional mental616

states obey “parallel” generalizations. In so far as we have a theoretical617

grip on conditional mental states at all, it is by means of such parallelism.618

But if we want parallelism, we must choose: accept 4 or deny Mat.619

63Similarly, not every probability function is a possible rational credence function, contra
Joyce (2009, 279)’s claim that “for any assignment of probabilities ⟨pn⟩ to ⟨Xn⟩ it seems that
a believer could, in principle, have evidence that justifies her in thinking that each Xn has
pn as its objective chance. [...] ⟨pn⟩ is the rational credence function for the person.” While
there are possible chance functions that are certain that (p but no one should ever be
certain that p), there is no possible rational credence function that is certain of this claim.
Neither logical consistency nor probabilistic coherence suffices for coherence.

64For credence 1, Mat follows from the ratio formula. If absolute certainty coincides with
logical truth, and conditional absolute certainty coincides with being a logical consequence
of the supposition, Mat is in effect the deduction theorem and its converse.
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A Syntactic Proof620

L ::= A | ¬p | (p ⊃ q) | ◻p | ∎p | ◻q p | ∎q p

A modal logic L over L is a set of L-sentences containing all classical621

truth-functional tautologies (PC) closed under modus ponens and uniform622

substitution. We let ∗ ∈ {◻,∎} to avoid duplication. A modal logic is623

normal when it is closed under necessitation for each modal operator (p/ ∗624

p and p/ ∗q p) and contains all instances of the K-axiom (∗(p ⊃ q) ⊃ (∗p ⊃625

∗q) and ∗p(q ⊃ r) ⊃ (∗pq ⊃ ∗pr)).626

We call p a theorem of logic L (write: ⊢L p) when p ∈ L. We say627

p1, ..., pn entail q (write: p1, ..., pn ⊢L q) when ⊢L (p1 ∧ ... ∧ pn) ⊃ q. Let L628

be the smallest normal modal logic containing all instances of629

Frontloading
∎

. ∎q p ⊃ ∎(q ⊃ p)630

Preservation◻. ◻p ∧◇q ⊃ ◻q p631

We use ⊢ for ⊢L, and prove three auxiliary theorems of L, the first of which632

uses Frontloading
∎

and the other Preservation◻:633

Lemma 1. For q = (p ⊃ ¬∎p), ⊢ ◻q¬∎p ⊃ ◻q¬∎q p634

Proof. Contraposing Frontloading
∎

, ⊢ ¬∎(q ⊃ p) ⊃ ¬∎q p. By Normality,635

⊢ ◻q¬∎(q ⊃ p) ⊃ ◻q¬∎q p. For q = (p ⊃ ¬∎p), by PC we have636

(q ⊃ p) ⊣⊢ (p ⊃ ¬∎p) ⊃ p ⊣⊢ p

By Normality we thus infer ⊢ ◻q¬∎p ⊃ ◻q¬∎q p.637

Lemma 2. For q = (p ⊃ ¬∎p), ◻p ∧ ¬◻∎p ⊢ ◻q p ∧ ◻q¬∎p.638

Proof. Suppose ◻p ∧ ¬◻∎p.639

(a) ◻p ∧◇q follows by the definition of q and Normality, and so ◻q p by640

Preservation◻.641

(b) Similarly, ◻q ∧◇q follows by the definition of q and Normality, and642

so ◻qq by Preservation◻. This unpacks to ◻q(p ⊃ ¬∎p), which to-643

gether with (a) yields ◻q¬∎p by Normality.644

645

For schemata X1, ...Xn, let L + X1...Xn be the smallest normal modal logic646

containing all instances of Frontloading
∎

, Preservation◻, X1, ...Xn.647

C5c◇
◻∎. ◇q ⊃ (◻q¬∎q p ⊃ ¬◻q p)648

4◻∎. ◻p ⊃ ◻∎p649
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Fact 1. ⊢L+C5c◇
◻∎

◻p ⊃ ◻∎p.650

Proof. Let q = (p ⊃ ¬∎p). We prove by contradiction:651

1. ◻p ∧ ¬◻∎p Supposition652

2. ◻q p ∧ ◻q¬∎p Lemma 2, 1653

3. ◻q p ∧ ◻q¬∎q p Lemma 1, 2654

4. ◇q PC, Normality, 1655

5. ¬◻q p C5c◇, 3, 4656

6. ⊥ PC, 2, 5657

658

Corollary 1. For L+ the smallest normal modal logic containing all instances of659

Mat. ¬∗¬q ⊃ (∗q p ≡ ∗(q ⊃ p)) (∗ ∈ {◻,∎})660

◻p ⊃ ◻∎p is also a theorem of L+ + C5c◇
◻∎, L+ + C5c⊥

◻∎
, and L+ + C5c

◻∎
.661

C5c
◻∎

. ◻q¬∎q p ⊃ ¬◻q p662

C5c⊥
◻∎

. ¬◻q⊥ ⊃ (◻q¬∎q p ⊃ ¬◻q p)663

Proof. Frontloading
∎

and Preservation◻ are special cases of Mat. The664

corollary then follows from fact 1 and the fact that C5c
◻∎

and C5c⊥
◻∎

entail665

C5c◇
◻∎. (To see that C5c⊥

◻∎
entails C5c◇

◻∎, note that ◇q ⊃ (◻q⊥ ≡ ◻(q ⊃ ⊥))666

as an instance of Mat, and thus ◇q ⊃ ¬◻q⊥ by Normality and PC.)667

L∞ ::= A | ¬p | (p ⊃ q) | ◻q1,...qn p | ∎q1,...qn p (n ≥ 0)

Let L∞ be the smallest normal modal logic over L∞ which contains Mat∞:668

Mat∞. ¬ ∗q1...qn ¬r ⊃ (∗q1...qn,r p ≡ ∗q1...qn(r ⊃ p)) (n ≥ 0, ∗ ∈ {◻,∎})669

Fact 2. ⊢L∞+C5c◇∞
◻∎

◻
q1...qn p ⊃ ◻q1...qn∎

q1...qn p for any n ≥ 0, where670

C5c◇∞
◻∎ . ◇q1...qn−1 qn ⊃ (◻q1...qn¬∎q1...qn p ⊃ ¬◻q1...qn p) (n ≥ 0)671

C4∞
◻∎

. ◻q1...qn p ⊃ ◻q1...qn∎
q1...qn p (n ≥ 0)672

Proof. Analogous to the proof of fact 1 and corollary 1. (Substitute ∗q1...qn−1673

for ∗, qn for q throughout.)674

Corollary 2. L∞ + C4∞
◻∎

= L∞ + C5c◇∞
◻∎ .675

Proof. From fact 2 we have that L∞ + C4∞
◻∎

⊆ L∞ + C5c◇∞
◻∎ . It remains to676

be shown that L∞ + C5c◇∞
◻∎ ⊆ L∞ + C4∞

◻∎
:677

1. ◻q1...qn p ⊃ ◻q1...qn∎
q1...qn p C4∞

◻∎
678
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2. ¬◻q1...qn⊥ ⊃ (◻q1...qn p ⊃ ¬◻q1...qn¬∎q1...qn p) Normality∞, 1679

3. ¬◻q1...qn−1¬qn ⊃ (◻q1...qn⊥ ≡ ◻q1...qn−1(qn ⊃ ⊥)) Mat∞
680

4. ¬◻q1...qn−1¬qn ⊃ ¬◻q1...qn⊥ Normality∞, 3681

5. ¬◻q1...qn−1¬qn ⊃ (◻q1...qn¬∎q1...qn p ⊃ ¬◻q1...qn p) PC, 2, 4682

683
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